Wiki source code of Networks

Version 25.1 by Zenna Elfen on 2026/01/05 19:44

Hide last authors
Zenna Elfen 19.1 1 (% class="jumbotron" %)
2 (((
3 (% class="container" %)
4 (((
Zenna Elfen 20.1 5 = Peer-for-Peer Networks =
Zenna Elfen 19.1 6
Zenna Elfen 20.1 7 P4P, short for Peer-4-Peer (which in turn is short for Peer-for-Peer) are a family of networks which build on principles of local-first, peer-2-peer, open-source, routing agnostic (offline-first) and mutual-aid principles. The above is a lot of terms which in and of themselves carry a lot of meaning, yet when combined they enable censorship-resistant, resilient and adaptive, sustainable and energy-efficient communication infrastructures.
Zenna Elfen 19.1 8 )))
9 )))
10
Zenna Elfen 3.1 11 (% class="box" %)
12 (((
Zenna Elfen 11.1 13 This page contains an overview of all P4P Networks in this wiki and their building blocks.
14
15 You can also [[add a P4P Network>>doc:Projects.WebHome]] or have a look at the [[P4P Applications>>doc:P4P.Applications.WebHome]].
Zenna Elfen 3.1 16 )))
Zenna Elfen 1.1 17
Zenna Elfen 24.1 18
Zenna Elfen 25.1 19
20
Zenna Elfen 24.1 21 (((
Zenna Elfen 17.1 22 {{toc/}}
Zenna Elfen 25.1 23 )))
Zenna Elfen 1.1 24
Zenna Elfen 25.1 25 (((
Zenna Elfen 3.1 26
Zenna Elfen 11.1 27 == Building Blocks of P4P Networks ==
Zenna Elfen 9.1 28
29
Zenna Elfen 11.1 30 (% class="box" %)
31 (((
Zenna Elfen 15.1 32 To fully assemble a P4P network one needs a few different building blocks, below is an overview of 15 of those building blocks. Lost in translation? Take a look at the [[terminology>>doc:P4P.Definitions.WebHome]].
Zenna Elfen 11.1 33 )))
34
35
Zenna Elfen 15.1 36 ==== **1. Data Synchronization** ====
Zenna Elfen 11.1 37
Zenna Elfen 13.1 38 > Synchronization answers **how updates flow between peers** and how they determine what data to exchange. This layer is about **diffing, reconciliation, order, causality tracking, and efficient exchange**, not persistence or user-facing collaboration semantics.
Zenna Elfen 11.1 39
Zenna Elfen 15.1 40 * //How do peers detect differences and synchronize state?//
41 * Examples: Range-Based Set Reconciliation, RIBLT, Gossip-based sync, State-based vs op-based sync, Lamport/Vector/HLC clocks, Braid Protocol
Zenna Elfen 11.1 42
43
44
Zenna Elfen 15.1 45 ==== **2. Collaborative Data Structures & Conflict Resolution** ====
Zenna Elfen 11.1 46
Zenna Elfen 13.1 47 > This layer defines **how shared data evolves** when multiple peers edit concurrently. It focuses on **conflict-free merging, causality, and consistency of meaning**, not transport or storage. CRDTs ensure deterministic convergence, while event-sourced or stream-driven models maintain a history of all changes and derive consistent state from it.
48
Zenna Elfen 15.1 49 * //How do peers collaboratively change shared data and merge conflicts?//
50 * Examples: CRDTs (Yjs, Automerge), OT, Event Sourcing, Stream Processing, Version Vectors, Peritext
Zenna Elfen 13.1 51
52
53
Zenna Elfen 15.1 54 ==== **3. Data Storage & Replication** ====
Zenna Elfen 13.1 55
56 > This layer focuses on **durability, consistency, and redundancy**. It handles write-paths, crash-resilience, and replication semantics across nodes. It is the “database/storage engine” layer where **data lives and survives over time**, independent of sync or merging logic.
57
Zenna Elfen 15.1 58 * //How is data persisted locally and replicated between peers?//
59 * Examples: SQLite, IndexedDB, LMDB, Hypercore (append-only logs), WALs, Merkle-DAGs (IPFS/IPLD), Blob/media storage
Zenna Elfen 13.1 60
61
62
Zenna Elfen 15.1 63 ==== **4. Peer & Content Discovery** ====
64
Zenna Elfen 13.1 65 > Discovery occurs in two phases:
66 > 1. **Peer Discovery** → finding _any_ nodes
67 > 2. **Topic Discovery** → finding _relevant_ nodes or resources
68 > These mechanisms enable decentralized bootstrapping and interest-based overlays.
69
Zenna Elfen 15.1 70 * //How do peers find each other, and how do they discover content in the network?//
71 * Examples: DHTs (Kademlia, Pastry), mDNS, DNS-SD, Bluetooth scanning, QR bootstrapping, static peer lists, Interest-based routing, PubSub discovery (libp2p), Rendezvous protocols
Zenna Elfen 13.1 72
73
74
Zenna Elfen 15.1 75 ==== **5. Identity & Trust** ====
Zenna Elfen 13.1 76
77 > Identity systems ensure reliable mapping between peers and cryptographic keys. They underpin authorization, federated trust, and secure overlays.
78
Zenna Elfen 15.1 79 * //How peers identify themselves, authenticate, and establish trustworthy relationships?//
80 * Examples: PKI, Distributed Identities (DIDs), Web-of-Trust, TOFU (SSH-style), Verifiable Credentials (VCs), Peer key fingerprints (libp2p PeerIDs), Key transparency logs
Zenna Elfen 13.1 81
82
Zenna Elfen 16.1 83
Zenna Elfen 15.1 84 ==== **6. Transport Layer** ====
Zenna Elfen 13.1 85
Zenna Elfen 15.1 86 > This layer provides logical connections and flow control. QUIC and WebRTC bring modern congestion control and encryption defaults; Interpeer explores transport beyond IP assumptions.
Zenna Elfen 13.1 87
Zenna Elfen 16.1 88 * //How do peers establish end-to-end byte streams and reliable delivery?//
Zenna Elfen 15.1 89 * Examples: TCP, UDP, QUIC, SCTP, WebRTC DataChannels, Interpeer transport stack
Zenna Elfen 13.1 90
91
Zenna Elfen 16.1 92
Zenna Elfen 15.1 93 ==== **7. Underlying Transport (Physical/Link Layer)** ====
94
95 > Highly relevant for **offline-first / edge networks**, device-to-device communication, and mesh networks and relates to the hardware which facilitates connections.
96
Zenna Elfen 16.1 97 * //How does data move across the medium?//
Zenna Elfen 15.1 98 * Examples: Ethernet, Wi-Fi Direct / Wi-Fi Aware (post-AWDL), Bluetooth Mesh, LoRa, NFC, Cellular, CSMA/CA, TDMA, FHSS
99
Zenna Elfen 16.1 100
101
Zenna Elfen 15.1 102 ==== **8. Session & Connection Management** ====
103
104 > Manages **connection lifecycle**, including authentication handshakes, reconnection after drops, and session continuation—especially important in lossy or mobile networks.
105
Zenna Elfen 16.1 106 * //How are connections initiated, authenticated, resumed, and kept alive?//
Zenna Elfen 15.1 107 * Examples: TLS handshake semantics, Noise IK/XX patterns, session tokens, keep-alive heartbeats, reconnection strategies, session resumption tickets
108
109
Zenna Elfen 16.1 110
Zenna Elfen 15.1 111 ==== **9. Content Addressing** ====
112
113 > Content addressing ensures **immutability, verifiability, and deduplication**. Identity of data = cryptographic hash, enabling offline-first and tamper-evident systems.
114
Zenna Elfen 16.1 115 * //How is data addressed and verified by content, not location?//
Zenna Elfen 15.1 116 * Examples: IPFS CIDs, BitTorrent infohashes, Git hashes, SHA-256 addressing, Named Data Networking (NDN)
117
Zenna Elfen 16.1 118
119
Zenna Elfen 15.1 120 ==== **10. P2P Connectivity** ====
121
Zenna Elfen 16.1 122 > Connectivity ensures peers bypass NATs/firewalls to reach each other. 
Zenna Elfen 15.1 123
Zenna Elfen 16.1 124 * //How can two peers connect directly across networks, firewalls, and NATs?//
Zenna Elfen 15.1 125 * Examples: IPv6 direct, NAT Traversal, STUN, TURN, ICE (used in WebRTC), UDP hole punching, UPnP
126
Zenna Elfen 16.1 127
128
Zenna Elfen 15.1 129 ==== **11. Session & Connection Management** ====
130
131 > Manages **connection lifecycle**, including authentication handshakes, reconnection after drops, and session continuation.
132
Zenna Elfen 16.1 133 * //How are connections initiated, authenticated, resumed, and kept alive?//
Zenna Elfen 15.1 134 * Examples: TLS handshake semantics, Noise IK/XX patterns, session tokens, keep-alive heartbeats, reconnection strategies, session resumption tickets
135
Zenna Elfen 16.1 136
137
Zenna Elfen 15.1 138 ==== **12. Message Format & Serialization** ====
139
140 > Serialization ensures **portable data representation**, forward-compatible schemas, and efficient messaging. IPLD provides content-addressed structuring for P2P graph data.
141
Zenna Elfen 16.1 142 * //How is data encoded, structured, and made interoperable between peers?//
Zenna Elfen 15.1 143 * Examples: CBOR, Protocol Buffers, Cap’n Proto, JSON, ASN.1, IPLD schemas, Flatbuffers
144
Zenna Elfen 16.1 145
146
Zenna Elfen 15.1 147 ==== **13. File / Blob Synchronization** ====
148
149 > Bulk data syncing has **different trade-offs** than small collaborative state (chunking, deduplication, partial transfer, resume logic). Critical for media and archival P2P use-cases.
150
Zenna Elfen 16.1 151 //How are large objects transferred and deduplicated efficiently across peers?//
Zenna Elfen 15.1 152 Examples: BitTorrent chunking, IPFS block-store, NDN segments, rsync-style delta sync, ZFS send-receive, streaming blob transfers
153
Zenna Elfen 16.1 154
Zenna Elfen 15.1 155 ==== **14. Local Storage & Processing Primitives** ====
156
157 > Provides durable on-device state and local computation (event sourcing, materialization, compaction). Enables offline-first writes and deterministic replay.
158
Zenna Elfen 16.1 159 * //How do nodes persist, index, and process data locally—without external servers?//
Zenna Elfen 15.1 160 * Examples: RocksDB, LevelDB, SQLite, LMDB, local WALs/append-only logs, embedded stream processors (NATS Core JetStream mode, Actyx-like edge runtimes), Kafka-like libraries
161
162
Zenna Elfen 16.1 163
Zenna Elfen 15.1 164 ==== **15. Crash Resilience & Abortability** ====
165
166 > Ensures P2P apps don’t corrupt state on crashes. Tied to **local storage & stream-processing**, and critical in offline-first and distributed update pipelines. Abortability is the updated term for Atomicity as part of the ACID abbreviation.
167
Zenna Elfen 16.1 168 * //How do nodes recover and maintain correctness under failure?//
Zenna Elfen 15.1 169 * Examples: WALs, idempotent ops, partial log replay, transactional journaling, write fences
170
171
172
173
Zenna Elfen 11.1 174 == Distributed Network Types ==
175
176
177 [[Flowchart depicting distributed network variants, under development. Building on work from Z. Elfen, 2024: ~[~[https:~~~~/~~~~/doi.org/10.17613/naj7d-6g984~>~>https://doi.org/10.17613/naj7d-6g984~]~]>>image:P4P_Typology.png||alt="Flowchart depicting typologies of distributed networks, such as Friend-2-Friend, Grassroots Networks, Federated Networks, Local-First, P2P and P4P Networks" data-xwiki-image-style-alignment="center" height="649" width="639"]]
178
179
Zenna Elfen 25.1 180
Zenna Elfen 24.1 181 )))
Zenna Elfen 11.1 182
183
Zenna Elfen 21.1 184 (% class="col-xs-12 col-sm-4" %)
185 (((
186 {{box title="==== Contents ====
187
188 ====== ======"}}
189 {{toc depth="3"/}}
190 {{/box}}
Zenna Elfen 24.1 191 )))
192
193
194 (((
195 == Overview of P4P Networks ==
Zenna Elfen 25.1 196
Zenna Elfen 22.1 197 {{include reference="Projects.WebHome"/}}
198 )))
199
Zenna Elfen 23.1 200